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Data from exploring robots can be used to map individual robot paths separately;

where robots meet, the paths may be merged to form a larger map.
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ABSTRACT | This paper describes a novel representation for

two-dimensional maps, and shows how this representation

may be applied to the problem of multirobot simultaneous

localization and mapping. We are inspired by the notion of a

manifold, which takes maps out of the two-dimensional plane

and onto a surface embedded in a higher-dimensional space.

The key advantage of the manifold representation is self-

consistency: when closing loops, manifold maps do not suffer

from the Bcross over[ problem exhibited in planar maps. This

self-consistency, in turn, facilitates a number of important

capabilities, including autonomous exploration, search, and

retro-traverse. It also supports a very robust form of loop

closure, in which pairs of robots act collectively to confirm or

reject possible correspondence points. In this paper, we de-

velop the basic formalism of the manifold representation, show

how this may be applied to the multirobot simultaneous

localization and mapping problem, and present experimental

results obtained from teams of up to four robots in environ-

ments ranging in size from 400 to 900 m2.

KEYWORDS | Exploration and search; multirobot systems;

simultaneous localization and mapping (SLAM)

I . INTRODUCTION

Many mobile robot tasks, such as exploration and search,

are performed in environments that are only partially

mapped. As a result, these autonomous behaviors must be

performed concurrently with a simultaneous localization

and mapping process (SLAM). In this paper, we develop a

map representation that remains self-consistent with

respect to common navigation problems (such as path
planning), while also supporting the simultaneous local-

ization and mapping process. Standard planar maps are ill-

suited for this purpose, due their tendency to become

confused (at least temporarily) in environments contain-

ing loops. Consider, for example, the situation shown in

Fig. 1: as the robot traverses a partial loop, the path of the

robot crosses over itself. While this inconsistency may be

ultimately be resolved by moving further along the loop,
the planar map cannot be used for path-planning in the

interim. In contrast, under the same conditions, a manifold
representation remains entirely self-consistent. Robots can

construct paths, for example, as long as those paths remain

embedded in the manifold. Furthermore, if the robot does

ultimately close the loop, the manifold can be collapsed to

recover a self-consistent planar representation.

The manifold representation facilitates a number of
interesting capabilities. For example, using incremental

mapping alone (i.e., no loop closures), a robot can always

retro-traverse to any previously visited location (or, more

precisely, to any point on the manifold). In this case, the

same location in the world may be represented more than

once in the manifold: if the robot traverses a loop in one

direction, for example, the manifold will develop a spiral

structure, with the same locations being repeated over and
over again. In spite of this ambiguity, however, the robot

can always retro-traverse by traveling back along the spiral

structure.
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The many-to-one relationship between points on the
manifold and points in the world gives rise to a second

interesting capability: lazy loop closure. Loop closure is the

most difficult part of the simultaneous localization and

mapping process: in order to close a loop, one must decide

that two points in the map correspond to the same point in

the world (this is the data-association problem). In the

manifold representation, such decisions can be indefinitely

delayed, without risking map consistency; thus, one may
wait until robots acquire more information to conclusively

establish the correspondence (or lack thereof) between

two points. In the multirobot context, this allows us to take

active steps to discover correspondence points, using pairs

of robots acting in concert. Thus, for example, a pair of

robots can arrange a rendezvous at two points on the

manifold that may or may not represent the same location

in the world: if the robots meet, the points match and the
loop is closed; if they fail to meet, the points are distinct

and there is no loop.

This paper makes no attempt to cover all aspects the

manifold representation outlined above. Instead, we

restrict ourselves to introducing the basic methodology

and applying it to the specific problem of multirobot

mapping. We take maximum likelihood estimation (MLE)

techniques that have previously been applied to simulta-
neous localization and mapping [1], [2], and adapt those

techniques for the manifold representation. For validation,

we present experimental mapping results from a number

environments, using teams of up to four robots, under both

manual and autonomous control.

II . RELATED WORK

Thrun’s survey paper [3] identifies a relatively small set of

probabilistic methods underlying most recent SLAM
algorithms: these include Kalman filters [4], [5], expecta-

tion maximization [6], incremental maximum likelihood

[2], and various hybrid methods [7]. Recent work on

FastSLAM algorithms (which approximate the full poste-

rior distribution over maps using a particle filter) should

be added to this list [8], [9]. The approach described in this

paper makes use of both incremental MLE (for fine-scale

localization) and Lu-and-Milios-style global map align-
ment [1]. We also make use of local map patches to enforce

global/topological map consistency; this is similar in

concept, if not in detail, to the approach taken in the

Atlas framework [10], and in hybrid extensions to the

Spatial Semantic Hierarchy [11].

Existing SLAM methods have known limitations, the

most important of which is sensitivity to false data

associations. The manifold representation is designed, in
part, to overcome this limitation: it provides a mechanism

whereby data-association decisions can be postponed until

such time as they can be made with high confidence.

Hähnel [12] describes an alternativeVand possibly more

powerfulVapproach to this problem, in which bad data-

association decisions may be retracted by stepping back

through a tree-structured representation of possible maps.

It should be noted that the research described in this
paper was spurred by a very specific programmatic

challenge: to deploy a large number of robots into an

unexplored building, map the building interior, detect and

track intruders, and transmit all of the above information

to a remote operator. The multirobot systems built to meet

this challenge are described in [13] and [14].

III . MAPPING ON A MANIFOLD:
CORE CONCEPTS

The key conceptual difficulty with manifold mapping lies
in the representation of the manifold itself. In principle,

the manifold is an arbitrarily complex structure with

varying local curvature; in practice, the representation

must be discrete, and hence some degree of approximation

and linearization is inevitable. In this section, we develop

the basic concepts, definitions, and notation used in our

approximated representation.

A. Patches
The manifold is discretized by dividing it into a set of

overlapping patches, each of which has finite extent and

defines a local (planar) coordinate system. Let � denote
the set of such patches; we make the following definition:

� ¼ f�g : � ¼ ð�; sÞ (1)
Fig. 1. Illustration of a partially closed loop. (a) Planar representation.

(b) Manifold representation.
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where an individual patch � consists of a free-space polygon
s describing the extent of the patch,1 and a projected planar
pose � that defines the patch-local coordinate system (� is

obtained by projecting the origin of the patch onto a

canonical plane).
Given these definitions, the pose of any object on the

manifold can subsequently be described by a tuple

� ¼ ð�; rÞ specifying a particular patch � and the pose r
of the object with respect to that patch (r must lie inside

the patch polygon s). Importantly, since patches may

overlap, the tuple � need not be unique: one can also write

down the same object’s pose as �� ¼ ð��;�rÞ where �r is the

pose relative to some overlapping patch ��. Two questions
naturally arise from this apparent ambiguity: how does one

establish that the tuples � and �� represent the same pose

on the manifold, and how does one transform a pose

specified with respect to patch � into a pose specified with

respect an overlapping patch ��? Consider the manifold

illustrated in Fig. 2: each point on the manifold will

project onto exactly one point on an imaginary horizontal

plane, and, conversely, some points on the plane will
project onto multiple points on the manifold. This

observation leads to the following condition: the tuples �
and �� represent the same point on the manifold if and only

if the projections of the polygons s and �s overlap, and the

projections of r and �r are identical. Mathematically, this

condition is stated as follows:

ðs� �Þ \ ð�s� ��Þ 6¼ ; and r� �
 �r� �� ¼ 0 (2)

where � is a coordinate transform operator. Given a

projected pose � and patch-relative pose r, the expres-

sion r� � yields the corresponding projected pose q.

One can also define the inverse operator �: given two

projected poses � and q, the inverse expression q� �
recovers the patch-relative pose r. These operators obey

the normal rules for algebraic associativity, but do not
commute.

From the identity expressed in (2), one can trivially

derive the coordinate transform equations for overlapping

patches

�r ¼ r� �� �� and r ¼ �r� ��� �: (3)

Collectively, (2) and (3) provide the necessary tools for

working with manifold poses and their planar projections.
Importantly, one can use these equations to construct

paths on the manifold.

B. Relations
For concurrent localization and mapping, the projected

poses of the patches � are not known a priori; instead we

have a set of relations that constrain the patches’ relative
pose (a scan-matching algorithm, for example, may

establish point-to-point correspondences). Let � denote

the set of pairwise relations between patches; we write

� ¼ f�g : � ¼ ð�; ��; x; �x; �Þ (4)

where the relation � implies that point x on patch �
corresponds to point �x on patch ��; � is the uncertainty

associated with the correspondence. One can write down

similar definitions for point-to-line, line-to-line, relative

range, and relative bearing relations.

1Strictly speaking, we use polysolids rather than polygons for
representing free space, since polysolids form a group under the operations
of union and intersection (polysolids can have holes). The term Bpolysolid[
appears to have been coined by H. Maynard and L. Tavernini at the
University of Texas at San Antonio; their work was never published, but is
similar in concept to the polygon sets described in [15].

Fig. 2. Incremental localization and mapping. (a) and (b) A new laser scan (dotted polygon) is fitted against the robot’s local map (solid

polygon), to generate a corrected robot pose estimate. (c) If the laser scan covers unexplored regions of the manifold, a new patch is

added to the map.
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C. Fitting Patches
Given the above definitions, one can apply MLE

techniques to find the set of projected poses � ¼ f�g
that is most likely to generate the observed set of relations

� ¼ f�g. That is, MLE searches for the estimate �̂ that

maximizes the conditional probability Pð�j�Þ

�̂ ¼ arg max
�

Pð�j�Þ

¼ arg max
�

Y
�2�

Pð�j�Þ (5)

where we make the additional assumption that the

relations in � represent statistically independent observa-

tions. Applying the standard log-likelihood transformation

to these equations, one can equivalently search for the �
that minimizes the (negative) conditional log-likelihood

Lð�j�Þ

�̂ ¼ arg min
�

X
�2�

Lð�j�Þ: (6)

This latter form is more convenient for most practical

purposes. For point-to-point relations with Gaussian

uncertainty, the log-likelihood for a single relation � is

given by

Lð�j�Þ ¼ 1

2�2
ðx� �
 �x� ��Þ2 (7)

where x� � denotes the projected pose of a point on patch

� and �x� �� denotes the projected pose of the

corresponding point on patch ��. Intuitively, one can

visualize the two points as being pulled together by a

simple spring.
In principle, the maximum likelihood estimate �̂ can

be found by solving

0 ¼
X
�2�
rLð�j�Þ: (8)

In the case of two-dimensional mapping, however, the

gradient terms on the right-hand side of (8) generally

contain transcendental components, and hence there

exists no closed-form solution. Fortunately, a range of

numeric optimization techniques can used to find the

minimum, including simple gradient descent and its more

refined brethren, such as the Levenburg–Marquardt and
Fletcher–Reeves algorithms [16].

The confidence in the estimate �̂ can be determined

by inspecting the local curvature of rLð�j�Þ around �̂.

Following the standard practice in the MLE literature

[17], we write down the stochastic Fisher information
matrix as

Jð�j�̂Þ ¼
X
�2�
r2Lð�j�̂Þ: (9)

The confidence interval �̂i on any component i of �̂ is then

given by

�̂i ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
1ð�j�̂Þ

� �
ii

r
(10)

where c is an appropriate critical value (e.g., 1.96 for a 95%

confidence interval), and the ii subscript denotes a

particular component of the inverted Fisher information
matrix. In practice, we are usually less interested in the

absolute fit confidence than we are in the relative

confidence between a given pair of patches; i.e., how

well is the pose of patch � determined with respect to

patch ��? This quantity can be determined using a sightly

modified version of the above procedure: we treat the

components of �̂ that correspond to patch � as constants,

and eliminate the corresponding rows and columns from
the Fisher information matrix. Inserting this reduced

matrix into (10), we obtain the component-wise confi-

dence intervals for every patch, relative to the Bfixed[
patch �. For the remainder of this paper, we will use

Jð�j�̂Þ to denote this reduced matrix.

IV. MULTIROBOT MAPPING

We turn now to the specific problem of multirobot

mapping, using the mathematical tools described in the

previous section. This problem can be broken into three
subproblems: incremental localization and mapping, loop

closure, and island merging.

Incremental localization and mapping is the basic

mode of operation for the mapping algorithm: as each

robot moves through the environment, odometry and laser

data are used to update the robot’s current pose estimate

and, under certain circumstances, to make incremental

additions to the map. The basic process is illustrated in
Fig. 2 and described in detail in the next section. Note that

robots extend the map at the edges of the manifold only; a

robot that is retro-traversing to a previously visited

location will not add to the map.

Howard et al. : Multirobot Simultaneous Localization and Mapping Using Manifold Representations
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This process is punctuated by two events that require

global changes to the map: loop closure and island

merging. Loop closure is the process whereby two widely

separated regions of the map are brought together (see

Fig. 3). In Section III-A, we showed that multiple points

on the manifold may project onto the same point on the

plane; in the context of mapping, this implies that two

widely separated points on the manifold may in fact
represent the same location in the world. Indeed, if one

uses incremental mapping alone, any loops in the

environment will be Bunrolled[ to form spiral struc-

tures, with the same series of locations repeating over

and over again in the manifold. Loop closure, then, is

the process whereby such repeated locations are

identified, and the topology of the manifold is modified

accordingly.
In a similar vein, island merging is the process whereby

two unconnected regions of the manifold are combined

into a single representation (see Fig. 4). In the context of

multirobot mapping, there are two basic scenarios that

give rise to such islands: robots enter the environment

from separate locations, or robots enter the environment

from the same location, but at different times. In either

case, we proceed by building a separate island for each

robot, and merging those islands only when a suitable

correspondence point has been established.

The loop-closure and island-merging processes depend

on our ability to uniquely identify a particular location in

the world (the traditional data-association problem). In the

case of single-robot mapping, there are two basic methods

for making this identification: recognizing a unique
feature associated with that location (including preplaced

fiducials) or making plausible guesses based on patterns of

nonunique features. These two methods have been well

treated in the single-robot mapping literature [2], [6], [7],

[12], and will not be covered here. Instead, we focus on a

third method that is unique to the multirobot mapping

domain: using the robots themselves as unambiguous

landmarks. Whenever two robots sight one anotherVa
process we refer to as mutual observationVwe establish a

correspondence between two points on the manifold;

mutual observations can therefore be used to close loops

and merge islands.

In the following sections, we describe the incremental

mapping, loop-closure, and island-merging processes in

detail. Note that, throughout this presentation, we assume

Fig. 3. A loop closure triggered by a mutual observation. (a) & (b) Two robots observe each other, generating a new relation. (c) The change

in topology is propagated through the manifold, inducing new relations and forcing patches to be refitted.

Fig. 4. Merging islands after a mutual observation. (a) Two robots observe each other, generating a new relation. (b) & (c) The two islands

are roughly aligned, and the change in topology is propagated through the manifold.
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that the mapping algorithm is centralized; i.e., data from all
of the robots is communicated to a common location,

where it is assembled to form a map.

A. Incremental Localization and Mapping
Incremental localization and mapping is performed

independently and concurrently for each robot on the

team. Two pieces of sensor data are used in this

process: odometry data (which measures changes in the
robot’s pose) and laser scan data (which measures the

range and bearing of nearby features).

Let ott0 be the measured (odometric) change in pose

between times t and t0, and let st0 be the laser scan that is

subsequently recorded. If �t ¼ ð�t; rtÞ is the robot pose

estimate at some time t, the updated robot pose estimate

�t0 ¼ ð�t0 ; rt0 Þ can be determined as follows.

1) Create a new patch �� ¼ ð��; s�Þ such that

��  ott0 � rt � �t and s�  st0 ; (11)

i.e., the projected pose �� is computed by

combining the measured (odometric) change in

pose ott0 with the robot’s current pose estimate �t.

2) Create a local map around the current patch �t;
the local map is the set of patches �� that are both

nearby (in the planar projection) and well fitted
with respect to �t; that is, �� contains all patches

� that satisfy the condition

1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
1ð�j�̂Þ

� �
��

r
G �: (12)

The notation here requires a little explanation:

Jð�j�̂Þ is the Fisher information matrix computed

for patch �t (see Section III-C); the patch � is

included in the local map only if the confidence
interval on every component of � is less than some

threshold �.

3) Match features in the new patch �� against

features in the local map ��. We omit the details

of the scan-matching algorithm and assume only

that it produces some set of relations ��.
4) Use MLE to fit the new patch against the local

map; i.e., find the projected pose �� that is most
likely to give rise to the observed relations ��

��  arg min
�

Lð��j�Þ: (13)

The minimum value is found using numeric

optimization.

5) Compute the new robot pose estimate
�t0 ¼ ð�t0 ; rt0 Þ by projecting the new patch back

into the manifold

�t0  arg min
�2�y
k�� � �k

rt0  �� � �t0 (14)

where �y is a subset of �� containing only

those patches whose scan polygons overlap with

�t; the potential ambiguity in the projection is

resolved by selecting the nearest patch from

this set.

Steps 3 and 4 of the algorithm may be applied iteratively

(EM style) to improve the quality of the fit.
The key step in this algorithm lies in the creation of the

local map. In effect, that part of the manifold that is well

localized with respect to the robot is projected onto a

plane; the robot is then localized by fitting its laser scan

against this planar projection. In this context, the choice of

the threshold � becomes crucial, since this parameter

implicitly controls the number of patches included in the

local map: if � is too small, there may not be enough
patches to adequately constrain the robot pose; if � is too

large, the local map may contain gross inconsistencies that

lead to widely inaccurate pose estimates.

Having localized the robot, we may need to extend the

map. There are a number of conditions that can trigger this

process: e.g., the new patch is far from any of the existing

patches in the local map, or the new patch covers’ a

significant area of the manifold that is not covered by the
current local map ��. If none of these conditions are true,

the patch �� is discarded; otherwise, the patch and its

relations are appended to the map. In this case, the robot

pose estimate �t0 ¼ ð�t0 ; rt0 Þ must also reset such that the

robot lies at the origin of the new patch; i.e.,

�t0  �� and rt0  0: (15)

B. Loop Closure
The loop-closure algorithm is triggered by events

(such as mutual observation) that generate new relation-

ships between previously unrelated patches. The key

challenge for this algorithm lies not in the integration of

this singular relation into the map; rather, it lies in the

integration of any additional relations that may be induced

as the change is propagated through the map. Consider,

for example, a pair of robots traveling in opposite direc-
tions around a circular environment. If the robots should

fail to observe each other on the first few passes (and thus

fail to close the loop), the manifold will develop a double

spiral structure (one spiral for each robot). The loop-

closure algorithm must be such that a single subsequent

mutual observation will the collapse the entirety of both

spirals into a single loop.
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Our method for achieving this collapse is as follows:
given a new relation, the algorithm propagates changes

outwards from the closure point, alternating between

inducing new relations and refitting the map. The process

terminates only when no new relations can be induced. Let

�ab denote a new relation between previously unrelated

patches �a and �b; the algorithm is as follows.

1) Add the new relation �ab to the map and refit

� arg min
�0

X
�2�

Lð�j�0Þ: (16)

2) Create a queue of patches; initialize the queue

with the set of all patches that are related to �a

or �b.

3) Pop the first patch off the queue; call this patch

��. Induce the local map �� for this patch using
the procedure described in Section IV-A.

4) Use scan-matching to fit the patch �� to the local

map ��. From the set of relations �� found by the

scan-matching algorithm, eliminate those that are

already in the map; i.e., �� should represent the

set of new relations for patch �.

5) If �� is nonempty:

a) add the new relations �� to the map and refit
as per step 1;

b) add all patches that are related to �� to the

queue.

The process continues until the queue is empty.

Compared to incremental localization and mapping,

the loop-closure algorithm is relatively expensive: refitting

the entire map is nontrivial, and may be performed more

than once for any given loop closure. Fortunately, closure
events are relatively rare (their frequency depends on the

number of loops in the environment). In addition, the

loop-closure algorithm is executed only once for each loop

in the environment; subsequent traversals of a loop will
incur no penalty.

C. Island Merging
The island-merging algorithm is triggered by events

that induce relations between patches belonging to sep-

arate islands (patches are said to belong to the same

island only if and only if they are connected by some

sequence of relations). In this case, as with loop closure,
we must admit the possibility that there is substantial

overlap between the two islands, and any changes made

at the point where the islands are merged must be pro-

pagated throughout the map. The algorithm for island

merging is therefore identical to that used for loop

closure, with one exception: prior to merging, we treat

the two islands as rigid bodies and quickly bring them

into rough alignment, thus saving a great deal of time in
the refitting process.

Compared with incremental mapping, island merging

is a relatively expensive process. For a team of N robots,

however, the algorithm will be executed at most N 
 1

times; moreover, since robots are likely to commence

mapping from a relatively small number of initial

locations, most of these mergers are trivial (i.e., involving

islands with only a handful of patches).

V. EXPERIMENTS

The multirobot mapping approach described in this paper

has been applied to a wide range of environments of

varying size and complexity. Fig. 5 shows a selection of the

final occupancy grid maps produced by the algorithm;

these maps were generated autonomously, and in real time

(the data sets used to generate these maps can be

downloaded from the Radish [18] Web site).
Fig. 6 shows the result for one particularly challenging

experiment conducted under external supervision (i.e., the

environment and test conditions were selected by an

Fig. 5. Occupancy grids generated by the mapping package. (a) SAIC site A (two robots). (b) SAIC site B (four robots). (c) USC Science Library

(four robots).
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independent group). Four robots were deployed into the

test environment and executed an autonomous exploration

and search algorithm. Importantly, the robots were

deployed from two different entry points, and the relative

pose of these points was unknown. Each pair of robots was

therefore required to explore and map independently,

until such time as the teams came within line of sight of

one another. To facilitate mutual observation, each robot

was equipped with a scanning laser-range finder, a camera,

and a laser-visual bar code. Using the bar code, each robot

can determine the identity, range and bearing of other

robots; through the exchange of such observations, each

pair of robots can determine their relative pose to within a

few centimeters (over a distance of about 8 m).

Fig. 6. (a) A four-robot mapping team; each robot carries a unique laser-visual bar code to facilitate mutual recognition. (b) Final occupancy

grid produced during a multiple-robot, multiple-entry trial: two robots enter from the door at the right top, another two robots enter

from the door at the right bottom (the relative pose of the two doorways is unknown). The environment is approximately 600 m2 in area.

Fig. 7. (a) Occupancy grid generated by the pair of robots entering the environment from the top right. Open circles show the current robot

locations; closed circles show the patch centers. (b) Occupancy grid generated by the pair of robots entering from the bottom left. Note that these

maps have been reoriented to facilitate visual comparison; from the robot’s perspective, the relative pose of the two maps is unknown.

(c) A mutual observation (dotted line) allows the maps to be roughly aligned. (d) and (e) Relationships are incrementally propagated

through the manifold. (f) Relaxed grid map using data from all four robots.
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Fig. 7 illustrates the evolution of the map over the
course of the experiment. Initially, the two teams con-

struct separate maps (or islands) as shown in Fig. 7(a) and

(b). After a few minutes of autonomous exploration,

however, one of the robots from the first team encounters

a robot from the second (the two robots make a mutual

observation and determine their relative pose). This

triggers an island-merging event (Section IV-C), which

first brings the two maps into rough alignment [Fig. 7(c)],
then iteratively propagates new relationships between the

maps [Fig. 7(d) and (e)]. The final combined map after

island merging is shown in Fig. 7(f). Exploration continues

with all four robots, ultimately producing the map shown

in Fig. 6(b).

It should be noted that this map was generated online

and in real time (i.e., the time required to produce the

map was less than the time required for the robots to
explore the environment). During island merging or loop

closure, however, it is necessary to halt the robots for

some tens of seconds to allow the mapping process to

Bcatch up.[

VI. CONCLUSION AND FURTHER WORK

While the manifold techniques described in this paper

may be used to generate maps from robots under manual
control, our key motivation in designing this represen-

tation is to support autonomous behaviors for incom-

pletely mapped environments. As a result, our current

research is heavily focused on this topic. To date, we

have created an autonomous exploration algorithm that

exploits the manifold map to direct and coordinate mul-

tiple robots; our near-term aim is to extend this algo-

rithm to include planned rendezvous [19]: i.e., the use of
robots in pairs to explore regions of the manifold that

appear similar.

The algorithm, as presented, also has some key

limitations: since it relies on centralized processing, it is

sensitive to communication failures and scales poorly with

increasing team size (the largest experiment conducted to

date employed just four robots). Developing a truly

distributed version of this algorithm thus remains an
open challenge.
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